Phase-stabilized two-dimensional electronic spectroscopy.

نویسندگان

  • Tobias Brixner
  • Tomás Mancal
  • Igor V Stiopkin
  • Graham R Fleming
چکیده

Two-dimensional (2D) spectroscopy is a powerful technique to study nuclear and electronic correlations between different transitions or initial and final states. Here we describe in detail our development of inherently phase-stabilized 2D Fourier-transform spectroscopy for electronic transitions. A diffractive-optic setup is used to realize heterodyne-detected femtosecond four-wave mixing in a phase-matched box geometry. Wavelength tunability in the visible range is accomplished by means of a 3 kHz repetition-rate laser system and optical parametric amplification. Nonlinear signals are fully characterized by spectral interferometry. Starting from fundamental principles, we discuss the origin of phase stability and the precise calibration of excitation-pulse time delays using movable glass wedges. Automated subtraction of undesired scattering terms removes experimental artifacts. On the theoretical side, the response-function formalism is extended to describe molecules with three electronic levels, and the shape of 2D spectral features is discussed. As an example for this technique, experimental 2D spectra are shown for the dye molecule Nile Blue in acetonitrile at 595 nm, recorded for a series of population times. Simulations explore the influence of different model parameters and qualitatively reproduce the experimental results. We show that correlations between different electronically excited states can be determined from the spectra. The technique described here can be used to measure the third-order response function of complex systems covering several electronic transitions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy.

The JILA multidimensional optical nonlinear spectrometer (JILA-MONSTR) is a robust, ultrastable platform consisting of nested and folded Michelson interferometers that can be actively phase stabilized. This platform generates a square of identical laser pulses that can be adjusted to have arbitrary time delay between them while maintaining phase stability. The JILA-MONSTR provides output pulses...

متن کامل

Melting of two-dimensional adatom superlattices stabilized by long-range electronic interactions.

The melting transition of Ce adatom superlattices stabilized by long-range substrate-mediated electronic interactions on Cu(111) and Ag(111) noble metal surfaces has been investigated by low-temperature scanning tunneling microscopy, density functional theory calculations, and kinetic Monte Carlo simulations. Intriguingly, owing to the interaction between Ce adatoms and substrate, these superla...

متن کامل

Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy.

Electronic structure and dynamics determine material properties and behavior. Important time scales for electronic dynamics range from attoseconds to milliseconds. Two-dimensional optical spectroscopy has proven an incisive tool to probe fast spatiotemporal electronic dynamics in complex multichromophoric systems. However, acquiring these spectra requires long point-by-point acquisitions that p...

متن کامل

Metal-insulator transition in disordered two-dimensional electron systems.

We present a theory of the metal-insulator transition in a disordered two-dimensional electron gas. A quantum critical point, separating the metallic phase, which is stabilized by electronic interactions, from the insulating phase, where disorder prevails over the electronic interactions, has been identified. The existence of the quantum critical point leads to a divergence in the density of st...

متن کامل

Coexistence of one- and two-dimensional supramolecular assemblies of terephthalic acid on Pd(111) due to self-limiting deprotonation.

The adsorption of terephthalic acid [C(6)H(4)(COOH)(2), TPA] on a Pd(111) surface has been investigated by means of scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy, and near-edge x-ray absorption fine structure spectroscopy under ultrahigh vacuum conditions at room temperature. We find the coexistence of one- (1D) and two-dimensional (2D) molecular ordering. Our analysis i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 121 9  شماره 

صفحات  -

تاریخ انتشار 2004